Baicalin Suppresses Hypoxia-Reoxygenation-Induced Arterial Endothelial Cell Apoptosis via Suppressing PKCδ/p53 Signaling

نویسندگان

  • Xiaoling Shou
  • Bozhong Wang
  • Rongfang Zhou
  • Lei Wang
  • Aihua Ren
  • Shangping Xin
  • Liyue Zhu
چکیده

BACKGROUND This study was aimed to investigate the protective role of baicalin on vascular endothelium exposed to ischemia reperfusion injury and the involved molecular mechanisms. MATERIAL AND METHODS Cultured human arterial endothelial cells (HAECs) were exposed to hypoxia/deoxygenation (H/R). Cells were also treated with baicalin at serially diluted concentrations. Cells were also treated with PKC activator PEP005 or specific siRNA against protein kinase Cδ (PKCδ). MTT assay was used to evaluate the cell viabilities. Flow cytometry was used to detect cell apoptosis. The protein phosphorylation and expression levels were determined by Western blotting. RESULTS PKCδ-siRNA transfection increased cell viabilities and reduced cell apoptosis in HAECs exposed to H/R. Baicalin treatment preserved cell viabilities and reduced apoptosis of H/R-exposed HAECs in a concentration- dependent manner. Baicalin treatment reduced phosphorylation levels of PKCδ and p53, as well as the expression levels of active caspase3 and bax in HAECs exposed to H/R. The treatment of PKC activator PEP005 impaired the protective effects of baicalin in increasing cell viabilities and reducing apoptosis in HAECs exposed to H/R. CONCLUSIONS Baicalin exerts vascular a protective effect on HAECs exposed to H/R by reducing cell apoptosis. The PKCδ/p53 apoptotic signaling pathway was the pharmacological target of baicalin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122

Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...

متن کامل

Hypoxia-activated apoptosis of cardiac myocytes requires reoxygenation or a pH shift and is independent of p53.

Ischemia and reperfusion activate cardiac myocyte apoptosis, which may be an important feature in the progression of ischemic heart disease. The relative contributions of ischemia and reperfusion to apoptotic signal transduction have not been established. We report here that severe chronic hypoxia alone does not cause apoptosis of cardiac myocytes in culture. When rapidly contracting cardiac my...

متن کامل

Molecular Pathways Targeting Hypoxic Cells through the DNA Damage Response

Exposure to hypoxia-induced replication arrest initiates a DNA damage response that includes both ATRand ATM-mediated signaling. DNA fiber analysis was used to show that these conditions lead to a replication arrest during both the initiation and elongation phases, and that this correlated with decreased levels of nucleotides. The DNA damage response induced by hypoxia is distinct from the clas...

متن کامل

Baicalin attenuates monocrotaline-induced pulmonary hypertension through bone morphogenetic protein signaling pathway

Baicalin, a flavonoid compound extracted from roots of Scutellaria baicalensis Georgi (huang qin), it has been shown to effectively attenuates pulmonary hypertension (PH), however, the potential mechanism remains unexplored. In this study, we investigated the potential mechanism of baicalin on monocrotaline (MCT)-induced PH in rats. The results showed that baicalin attenuated lung damage in PH ...

متن کامل

Exogenous NAD(+) supplementation protects H9c2 cardiac myoblasts against hypoxia/reoxygenation injury via Sirt1-p53 pathway.

Nicotinamide adenine dinucleotide (NAD(+) ) not only transfers electrons in mitochondrial respiration, but also acts as an indispensable cosubstrate for Sirt1, the class III histone/nonhistone deacetylase. However, NAD(+) is depleted in myocardial ischemia/reperfusion (IR) injury. The objective of this study was to investigate the role of exogenous NAD(+) supplementation in hypoxia/reoxygenatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2017